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Abstract. Octagonal quasicrystals will be realized in a cyclotomic field, and a formula for
shelling will be given using number theory.

Let V = eaf.‘leR{si be a Euclidean space with an orthonormal bdsis ¢», €3, €4}, and
Q = @} ,Ze; the lattice inV spanned by this basis. We take a primitive eighth root of

unity ¢ = (v/2++/—2)/2, and a cyclotomic fieldf = Q(¢). PutE = RNF = Q(~/2). Let
Op = Z[¢], the ring of integers off, and O = Z[+/2], the ring of integers oE. We put
T =1+ +/2 ando = 1 — /2. We choose a generatdrof Gal(F/Q(+v/—1)) ~ GalE/Q)
with §(v/2) = —+/2. We usex for the complex conjugate of. Now we define &-linear
map, calledr, of Q onto Or with

mEe) =¢"=1  me) =¢=(2++-2)/2

mi(es) = ¢t = (V2 - /=2)/2 my(eq) =22 =+/—1.
For a positive real numbeft, we define a quasicrystal

Y ={xeOr||dx)] <r}

This definition is equivalent to the following construction usipg and p,. (For
quasiperiodic patterns, quasicrystals and related alloys, we refer to [1-14] and so on.)
Let
v =e1— &2+ (1+v2)e3 — (1+v2)eq vy = &7 — £3 + /284
v’1=81—£2~|—(1—«/§)83—(1—\/§)54 v’2=£2—£3—«/§£4.
We putV, = Rv; @ Rv, andV, = Rov] @ Rv,. ThenV =V, @ V,. We take a canonical
orthogonal projectionp, of V onto V, and a canonical orthogonal projection,, of V
onto V,. Then we see thal” is isomorphic to
o =1{p®) |x € Q,|lpL(x)] <r}

undersw; (up to some scaling). Here, we will discuss a shelling of a particular quasicrystal.
We will follow the idea of Moody and Patera [9], and we will establish a formula for
shelling, which is analogous to Moody and Weiss [10].

For eachN =0, 1,2, ..., we define

Ov={xe Q] x)=N}
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Then the latticeQ decomposes into a set of concentric sh&lg. We now introduce a
shelling on each quasicrystal”. We putOr y = m;(Qy) and

=X NOfyN
={xeOrn |16 <r}.
Letx = Z?Zla,-ei € QOy. Then
17y ()2 = |a1 + ax(V2 + vV =2) /2 + as(N2 — /=2) /2 + agv/—1]?
= (a1 + a2/ V2 + a3/ V2P + (a2//2 — as/V'2 + as)?
= (af + a% + a?z, + a‘%) + (a1az + a1a3 + azas — a3a4)«/§.
Hence, for eachr € O, we see thak € X}, if and only if
Ix|>?=N + m~/2
0< 82 =N —mv2 < r?
for somem € Z, which implies
N/N2>m > (N —r?/v2.

In particular, it is an interesting situation whefy+/2 = (N — r2)/+/2+ 1. Such an- will
be denoted by. That is,

p ="
In this case, we obtain
Th={x € Op | x> =N +[N/V2]V2)
for N =0,1,2,..., where [] is the Gauss symbol. Now we consider the inflation
X > TX
which mapsZ* bijectively onto */* contained inZ”. Then we obtain
xeXl = x> =N+[N/V2]V2
— |tx]? = 1+ V24N +[N/V2]V?2)
= (3+2V2)(N +[N/v2IV2)
= (3N +4[N/v2]) + (2N + 3[N/V2)V2.

Sincetx € T, we see thattx|? = M + [M/+/2]v/2 andtx € %, for someM by the
choice of ourp, which automatically mean&f = 3N + 4[N /+/2]. Hence,

P P
TXy C E3N+4[N/\/§]

[(3N + 4[N /v2])/+/2] = 2N + 3[N/V/2].
For eachN, we define a sequendé&, (N)}°°; by

Li(N)=N

Lao(N) = [N/V/2]

Lo¢y1(N) = 3L21(N) + 4L (N)

Logi2(N) = 2L3_1(N) + 3L (N).
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Then, we can see, for all odd
T2 00 C 2L m)
x€X) = X7 = Ly(N) + L1 (N)V2
Lot1(N) = [L,(N)/v/2].

Now we suppose € 7, With n odd. Then

112 = Lyy2(N) 4 Loy 3(N)V/2

and
lox|? = (3= 2V2)(Ly42(N) + Loia(N)V2)
= (3L,42(N) — 4L,13(N)) + (3L, 13(N) — 2L, ;2(N)V/2
= Ly(N) + Lyr1(N)V2.
Hence,ox € £ ), and sox = —t(ox) € tX] ;. Therefore,
T2, = 21,00
We define

sy = cardzy
for N =0,1,2,.... Then we see

SN = S3N+4[N/v2)

We also observe that each sh&lf, has complete,(8)-symmetry. That is; =y = Zj.
Hence, &y for all N = 1,2, 3,.... Furthermore, using a field extensi@jE (cf [15]), it
is easily seen thaty has the following formula:

SN = 8- H(UP(N*) + 1)
peX

if v,(N*) =0 (mod 2 for all p € Z andN > 0, where

X = {p € SpecO | IP € Spe®y, pOr = PP, P # P}

Y = {p € Specg | IP € Spe®dy, pOF = P2, P = P}

Z = {p € SpeOx | pOr € SpecOr}
where Spec is the spectrum of prime idealsjs the discrete valuation adg with respect
top andN* = N +[N/v/2]v/2. If v,(N*) # 0 (mod 2 for somep € Z, thensy = 0.

We will explain in more detail. Letp be a map of

oy = f{x € Op | x> = N*}
into

Ay ={I c Or | I =ideal IT = N*Op}
defined byp (x) = xOp. If ¢(x) = ¢(y) with x, y € =4, thenxOr = yOr andx = yu
for someu € Op. This implies|x|> = |y?- [u|> and |[u|> = 1. Hence,u = ¢’ for
somei. Conversely we see thai(x) = ¢(¢'x). Therefore,¢ is an eight-to-one map.
On the other hand, let take an ideale Ay. We write | = zOp with z € Op. Then
Il = zz2Or = N*Op. Hence, there is € Op such thatzzr = N*, which implies that
t € OF NE = 9. Thus,t = £(1+ +/2)* for somek. Sincezzt = N*, ¢t > 0 and
t = (14 +/2)*. Then,s(zzt) = §(N*) and |5(2)|25(t) = §(N*) > 0. Hence,8(r) > 0,
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which means that = (1+ +/2)* for somek. Therefore, if we put = z(1+ v/2)* € 2%,
theng(x) = xOp = z(1+ V2)*Op = zOr = I. Hence, we see that is surjective. We
now established the following:

sy = 8-cardAy.

If N*Og = p¢ .. plpt . p/p® . pr¥m with p; € X, p) € Y andp! € Z, then

N*Op = (PLP)™ .. (P PO PP PP P P

wherep; O = P, P;, piOF = Pl.’2 andp?/Or = P with P;, P/, P/ € Spe¢Or). Then we

L

must find all possible choices fdrsatisfying/I = N*Or. If all g; are even, say,; = 2h;,
then we can choose

I=PUPP . PP P PR P

with v; + w; = ¢;. In this case, we havée; + 1) ... (ex + 1) possibilities. If one of they;

is odd, then there is né satisfying/I = N*Or. Here we should note that, (N*) = ¢;.
Hence, it is now easy to obtain the above formulasfpr However, there is some redundancy
in this formula. That is, the cardinality df is just one. Also we can obtain the following
explicit description:

X =X1UX>

X1 = {(a+bv2) € SpecOx | a, b € Z, (a> — 2b?) € SpeZ, |a®> — 2b%| = 1 (mod 8}

X2 ={(p) € Spe®Ox | p € Z, (p) € SpeZ, p = £3 (mod 8}

Y = {(+/2) € SpecOx)}

Z ={(a +bV2) € Spe®g | a, b € Z, (a® — 2b?) € SpeZ, |a® — 2b?| = —1(mod8)}.

Furthermore, we can rewrite the formula as follows:

4 m
sv=8[J@+D -[[;+D
i=1 j=1
if ¢, =0 (mod 2 for all 1 < k < n, andsy = 0 otherwise, where
N* = N? —2[N/~2)? = 2/ pt.. .pZ‘qul Y TS e
is a factorization ofN** into prime numbers satisfying, € A, ¢; € B, r, € C with
1<i<{1<j<ml<k<n,
A ={p| pisaprimenumberp =1 (mod 8}
B ={p | p isaprime numberp = +3 (mod 8}
C ={p | pisaprimenumberp = —1 (mod 8}.

This means that we need only the factorization of* to get the valuesy, which
characterizes our shelling. A table of the first few non-trivialis given below:

N

1 2 9 10 12 14 15 17 18 20 21.. 69 ... 90
SN 8 8

346 7
8 8 8 16 16 8 8 16 16 8 16 8 8.. 32 ... 24

It should be interesting to have information about the average shelling, which might be
more difficult.
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