Octagonal quasicrystals and a formula for shelling

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 319321
(http://iopscience.iop.org/0305-4470/31/46/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:19

Please note that terms and conditions apply.

Octagonal quasicrystals and a formula for shelling

Jun Morita and Kuniko Sakamoto
Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan

Received 17 June 1998

Abstract

Octagonal quasicrystals will be realized in a cyclotomic field, and a formula for shelling will be given using number theory.

Let $V=\oplus_{i=1}^{4} \mathbb{R} \varepsilon_{i}$ be a Euclidean space with an orthonormal basis $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right\}$, and $Q=\oplus_{i=1}^{4} \mathbb{Z} \varepsilon_{i}$ the lattice in V spanned by this basis. We take a primitive eighth root of unity $\zeta=(\sqrt{2}+\sqrt{-2}) / 2$, and a cyclotomic field $\mathbb{F}=\mathbb{Q}(\zeta)$. Put $\mathbb{E}=\mathbb{R} \cap \mathbb{F}=\mathbb{Q}(\sqrt{2})$. Let $\mathfrak{O}_{\mathbb{F}}=\mathbb{Z}[\zeta]$, the ring of integers of \mathbb{F}, and $\mathfrak{O}_{\mathbb{E}}=\mathbb{Z}[\sqrt{2}]$, the ring of integers of \mathbb{E}. We put $\tau=1+\sqrt{2}$ and $\sigma=1-\sqrt{2}$. We choose a generator δ of $\operatorname{Gal}(\mathbb{F} / \mathbb{Q}(\sqrt{-1})) \simeq \operatorname{Gal}(\mathbb{E} / \mathbb{Q})$ with $\delta(\sqrt{2})=-\sqrt{2}$. We use \bar{x} for the complex conjugate of x. Now we define a \mathbb{Z}-linear map, called $\pi_{\|}$, of Q onto $\mathfrak{O}_{\mathbb{F}}$ with

$$
\begin{aligned}
& \pi_{\|}\left(\varepsilon_{1}\right)=\zeta^{0}=1 \quad \pi_{\|}\left(\varepsilon_{2}\right)=\zeta=(\sqrt{2}+\sqrt{-2}) / 2 \\
& \pi_{\|}\left(\varepsilon_{3}\right)=\zeta^{-1}=(\sqrt{2}-\sqrt{-2}) / 2 \quad \pi_{\|}\left(\varepsilon_{4}\right)=\zeta^{2}=\sqrt{-1} .
\end{aligned}
$$

For a positive real number r, we define a quasicrystal

$$
\Sigma^{r}=\left\{x \in \mathfrak{O}_{\mathbb{F}}| | \delta(x) \mid<r\right\} .
$$

This definition is equivalent to the following construction using $p_{\|}$and p_{\perp}. (For quasiperiodic patterns, quasicrystals and related alloys, we refer to [1-14] and so on.) Let

$$
\begin{array}{ll}
\boldsymbol{v}_{1}=\varepsilon_{1}-\varepsilon_{2}+(1+\sqrt{2}) \varepsilon_{3}-(1+\sqrt{2}) \varepsilon_{4} & \boldsymbol{v}_{2}=\varepsilon_{2}-\varepsilon_{3}+\sqrt{2} \varepsilon_{4} \\
\boldsymbol{v}_{1}^{\prime}=\varepsilon_{1}-\varepsilon_{2}+(1-\sqrt{2}) \varepsilon_{3}-(1-\sqrt{2}) \varepsilon_{4} & \boldsymbol{v}_{2}^{\prime}=\varepsilon_{2}-\varepsilon_{3}-\sqrt{2} \varepsilon_{4}
\end{array}
$$

We put $V_{\|}=\mathbb{R} \boldsymbol{v}_{1} \oplus \mathbb{R} \boldsymbol{v}_{2}$ and $V_{\perp}=\mathbb{R} \boldsymbol{v}_{1}^{\prime} \oplus \mathbb{R} \boldsymbol{v}_{2}^{\prime}$. Then $V=V_{\|} \oplus V_{\perp}$. We take a canonical orthogonal projection, $p_{\|}$, of V onto $V_{\|}$, and a canonical orthogonal projection, p_{\perp}, of V onto V_{\perp}. Then we see that Σ^{r} is isomorphic to

$$
\Sigma_{Q}^{r}=\left\{p_{\|}(x)\left|x \in Q,\left|p_{\perp}(x)\right|<r\right\}\right.
$$

under $\pi_{\|}$(up to some scaling). Here, we will discuss a shelling of a particular quasicrystal. We will follow the idea of Moody and Patera [9], and we will establish a formula for shelling, which is analogous to Moody and Weiss [10].

For each $N=0,1,2, \ldots$, we define

$$
Q_{N}=\{x \in Q \mid(x, x)=N\} .
$$

Then the lattice Q decomposes into a set of concentric shells Q_{N}. We now introduce a shelling on each quasicrystal Σ^{r}. We put $\mathfrak{O}_{\mathbb{F}, N}=\pi_{\|}\left(Q_{N}\right)$ and

$$
\begin{aligned}
\Sigma_{N}^{r} & =\Sigma^{r} \cap \mathfrak{O}_{\mathbb{F}, N} \\
& =\left\{x \in \mathfrak{O}_{\mathbb{F}, N}| | \delta(x) \mid<r\right\}
\end{aligned}
$$

Let $x=\sum_{i=1}^{4} a_{i} \varepsilon_{i} \in Q_{N}$. Then

$$
\begin{aligned}
\left|\pi_{\|}(x)\right|^{2} & =\left|a_{1}+a_{2}(\sqrt{2}+\sqrt{-2}) / 2+a_{3}(\sqrt{2}-\sqrt{-2}) / 2+a_{4} \sqrt{-1}\right|^{2} \\
& =\left(a_{1}+a_{2} / \sqrt{2}+a_{3} / \sqrt{2}\right)^{2}+\left(a_{2} / \sqrt{2}-a_{3} / \sqrt{2}+a_{4}\right)^{2} \\
& =\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)+\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{4}-a_{3} a_{4}\right) \sqrt{2} .
\end{aligned}
$$

Hence, for each $x \in \mathfrak{O}_{\mathbb{F}}$, we see that $x \in \Sigma_{N}^{r}$ if and only if

$$
\begin{aligned}
& |x|^{2}=N+m \sqrt{2} \\
& 0 \leqslant|\delta(x)|^{2}=N-m \sqrt{2}<r^{2}
\end{aligned}
$$

for some $m \in \mathbb{Z}$, which implies

$$
N / \sqrt{2} \geqslant m>\left(N-r^{2}\right) / \sqrt{2}
$$

In particular, it is an interesting situation when $N / \sqrt{2}=\left(N-r^{2}\right) / \sqrt{2}+1$. Such an r will be denoted by ρ. That is,

$$
\rho=(2)^{1 / 4}
$$

In this case, we obtain

$$
\Sigma_{N}^{\rho}=\left\{\left.x \in \mathfrak{O}_{\mathbb{F}}| | x\right|^{2}=N+[N / \sqrt{2}] \sqrt{2}\right\}
$$

for $N=0,1,2, \ldots$, where [] is the Gauss symbol. Now we consider the inflation
$x \longmapsto \tau x$
which maps Σ^{ρ} bijectively onto $\Sigma^{\rho / \tau}$ contained in Σ^{ρ}. Then we obtain

$$
\begin{aligned}
x \in \Sigma_{N}^{\rho} \Longrightarrow|x|^{2} & =N+[N / \sqrt{2}] \sqrt{2} \\
\Longrightarrow|\tau x|^{2} & =(1+\sqrt{2})^{2}(N+[N / \sqrt{2}] \sqrt{2}) \\
& =(3+2 \sqrt{2})(N+[N / \sqrt{2}] \sqrt{2}) \\
& =(3 N+4[N / \sqrt{2}])+(2 N+3[N / \sqrt{2}]) \sqrt{2}
\end{aligned}
$$

Since $\tau x \in \Sigma^{\rho}$, we see that $|\tau x|^{2}=M+[M / \sqrt{2}] \sqrt{2}$ and $\tau x \in \Sigma_{M}^{\rho}$ for some M by the choice of our ρ, which automatically means $M=3 N+4[N / \sqrt{2}]$. Hence,

$$
\begin{aligned}
& \tau \Sigma_{N}^{\rho} \subset \Sigma_{3 N+4[N / \sqrt{2}]}^{\rho} \\
& {[(3 N+4[N / \sqrt{2}]) / \sqrt{2}]=2 N+3[N / \sqrt{2}]}
\end{aligned}
$$

For each N, we define a sequence $\left\{L_{n}(N)\right\}_{n=1}^{\infty}$ by

$$
\begin{aligned}
& L_{1}(N)=N \\
& L_{2}(N)=[N / \sqrt{2}] \\
& L_{2 \ell+1}(N)=3 L_{2 \ell-1}(N)+4 L_{2 \ell}(N) \\
& L_{2 \ell+2}(N)=2 L_{2 \ell-1}(N)+3 L_{2 \ell}(N)
\end{aligned}
$$

Then, we can see, for all odd n,

$$
\begin{aligned}
& \tau \Sigma_{L_{n}(N)}^{\rho} \subset \Sigma_{L_{n+2}(N)}^{\rho} \\
& x \in \Sigma_{L_{n}(N)}^{\rho} \Rightarrow|x|^{2}=L_{n}(N)+L_{n+1}(N) \sqrt{2} \\
& L_{n+1}(N)=\left[L_{n}(N) / \sqrt{2}\right] .
\end{aligned}
$$

Now we suppose $x \in \Sigma_{L_{n+2}(N)}^{\rho}$ with n odd. Then

$$
|x|^{2}=L_{n+2}(N)+L_{n+3}(N) \sqrt{2}
$$

and

$$
\begin{aligned}
|\sigma x|^{2} & =(3-2 \sqrt{2})\left(L_{n+2}(N)+L_{n+3}(N) \sqrt{2}\right) \\
& =\left(3 L_{n+2}(N)-4 L_{n+3}(N)\right)+\left(3 L_{n+3}(N)-2 L_{n+2}(N)\right) \sqrt{2} \\
& =L_{n}(N)+L_{n+1}(N) \sqrt{2}
\end{aligned}
$$

Hence, $\sigma x \in \Sigma_{L_{n}(N)}^{\rho}$, and so $x=-\tau(\sigma x) \in \tau \Sigma_{L_{n}(N)}^{\rho}$. Therefore,

$$
\tau \Sigma_{L_{n}(N)}^{\rho}=\Sigma_{L_{n+2}(N)}^{\rho}
$$

We define

$$
s_{N}=\operatorname{card} \Sigma_{N}^{\rho}
$$

for $N=0,1,2, \ldots$ Then we see

$$
s_{N}=s_{3 N+4[N / \sqrt{2}]} .
$$

We also observe that each shell Σ_{N}^{ρ} has complete $\mathrm{I}_{2}(8)$-symmetry. That is, $\zeta \Sigma_{N}^{\rho}=\Sigma_{N}^{\rho}$. Hence, $8 \mid s_{N}$ for all $N=1,2,3, \ldots$ Furthermore, using a field extension \mathbb{F} / \mathbb{E} (cf [15]), it is easily seen that s_{N} has the following formula:

$$
s_{N}=8 \cdot \prod_{\mathfrak{p} \in X}\left(v_{\mathfrak{p}}\left(N^{*}\right)+1\right)
$$

if $v_{\mathfrak{p}}\left(N^{*}\right) \equiv 0(\bmod 2)$ for all $\mathfrak{p} \in Z$ and $N>0$, where

$$
\begin{aligned}
& X=\left\{\mathfrak{p} \in \operatorname{Spec} \mathfrak{O}_{\mathbb{E}} \mid \exists P \in \operatorname{Spec} \mathfrak{O}_{\mathbb{F}}, \mathfrak{p} \mathfrak{O}_{\mathbb{F}}=P \bar{P}, P \neq \bar{P}\right\} \\
& Y=\left\{\mathfrak{p} \in \operatorname{Spec} \mathfrak{O}_{\mathbb{E}} \mid \exists P \in \operatorname{Spec} \mathfrak{O}_{\mathbb{F}}, \mathfrak{p} \mathfrak{O}_{\mathbb{F}}=P^{2}, P=\bar{P}\right\} \\
& Z=\left\{\mathfrak{p} \in \operatorname{Spec} \mathfrak{O}_{\mathbb{E}} \mid \mathfrak{p} \mathfrak{O}_{\mathbb{F}} \in \operatorname{Spec} \mathfrak{O}_{\mathbb{F}}\right\}
\end{aligned}
$$

where Spec is the spectrum of prime ideals, $v_{\mathfrak{p}}$ is the discrete valuation of $\mathfrak{O}_{\mathbb{E}}$ with respect to \mathfrak{p} and $N^{*}=N+[N / \sqrt{2}] \sqrt{2}$. If $v_{\mathfrak{p}}\left(N^{*}\right) \not \equiv 0(\bmod 2)$ for some $\mathfrak{p} \in Z$, then $s_{N}=0$.

We will explain in more detail. Let ϕ be a map of

$$
\Sigma_{N}^{\rho}=\left\{\left.x \in \mathfrak{O}_{\mathbb{F}}| | x\right|^{2}=N^{*}\right\}
$$

into

$$
\Lambda_{N}=\left\{I \subset \mathfrak{O}_{\mathbb{F}} \mid I=\text { ideal, } I \bar{I}=N^{*} \mathfrak{O}_{\mathbb{F}}\right\}
$$

defined by $\phi(x)=x \mathfrak{O}_{\mathbb{F}}$. If $\phi(x)=\phi(y)$ with $x, y \in \Sigma_{N}^{\rho}$, then $x \mathfrak{O}_{\mathbb{F}}=y \mathfrak{O}_{\mathbb{F}}$ and $x=y u$ for some $u \in \mathfrak{O}_{\mathbb{F}}^{\times}$. This implies $|x|^{2}=|y|^{2} \cdot|u|^{2}$ and $|u|^{2}=1$. Hence, $u=\zeta^{i}$ for some i. Conversely we see that $\phi(x)=\phi\left(\zeta^{i} x\right)$. Therefore, ϕ is an eight-to-one map. On the other hand, let take an ideal $I \in \Lambda_{N}$. We write $I=z \mathfrak{O}_{\mathbb{F}}$ with $z \in \mathfrak{O}_{\mathbb{F}}$. Then $I \bar{I}=z \bar{z} \mathfrak{O}_{\mathbb{F}}=N^{*} \mathfrak{O}_{\mathbb{F}}$. Hence, there is $t \in \mathfrak{O}_{\mathbb{F}}^{\times}$such that $z \bar{z} t=N^{*}$, which implies that $t \in \mathfrak{O}_{\mathbb{F}}^{\times} \cap \mathbb{E}=\mathfrak{O}_{\mathbb{E}}^{\times}$. Thus, $t= \pm(1+\sqrt{2})^{k}$ for some k. Since $z \bar{z} t=N^{*}, t>0$ and $t=(1+\sqrt{2})^{k}$. Then, $\delta(z \bar{z} t)=\delta\left(N^{*}\right)$ and $|\delta(z)|^{2} \delta(t)=\delta\left(N^{*}\right)>0$. Hence, $\delta(t)>0$,
which means that $t=(1+\sqrt{2})^{2 k}$ for some k. Therefore, if we put $x=z(1+\sqrt{2})^{k} \in \Sigma_{N}^{\rho}$, then $\phi(x)=x \mathfrak{O}_{\mathbb{F}}=z(1+\sqrt{2})^{k} \mathfrak{O}_{\mathbb{F}}=z \mathfrak{O}_{\mathbb{F}}=I$. Hence, we see that ϕ is surjective. We now established the following:

$$
s_{N}=8 \cdot \operatorname{card} \Lambda_{N}
$$

If $N^{*} \mathfrak{O}_{\mathbb{E}}=\mathfrak{p}_{1}^{e_{1}} \ldots \mathfrak{p}_{k}^{e_{k}} \mathfrak{p}_{1}^{\prime f_{1}} \ldots \mathfrak{p}_{\ell}^{\prime f_{\ell}} \mathfrak{p}_{1}^{\prime \prime g_{1}} \ldots \mathfrak{p}_{m}^{\prime \prime g_{m}}$ with $\mathfrak{p}_{i} \in X, \mathfrak{p}_{i}^{\prime} \in Y$ and $\mathfrak{p}_{i}^{\prime \prime} \in Z$, then

$$
N^{*} \mathfrak{O}_{\mathbb{F}}=\left(P_{1} \bar{P}_{1}\right)^{e_{1}} \ldots\left(P_{k} \bar{P}_{k}\right)^{e_{k}} P_{1}^{\prime 2 f_{1}} \ldots P_{\ell}^{\prime 2 f_{\ell}} P_{1}^{\prime \prime g_{1}} \ldots P_{m}^{\prime \prime g_{m}}
$$

where $\mathfrak{p}_{i} \mathfrak{O}_{\mathbb{F}}=P_{i} \bar{P}_{i}, \mathfrak{p}_{i}^{\prime} \mathfrak{O}_{\mathbb{F}}=P_{i}^{\prime 2}$ and $\mathfrak{p}_{i}^{\prime \prime} \mathfrak{O}_{\mathbb{F}}=P_{i}^{\prime \prime}$ with $P_{i}, P_{i}^{\prime}, P_{i}^{\prime \prime} \in \operatorname{Spec}\left(\mathfrak{O}_{\mathbb{F}}\right)$. Then we must find all possible choices for I satisfying $I \bar{I}=N^{*} \mathfrak{O}_{\mathbb{F}}$. If all g_{i} are even, say $g_{i}=2 h_{i}$, then we can choose

$$
I=P_{1}^{v_{1}} \bar{P}_{1}^{w_{1}} \ldots P_{k}^{v_{k}} \bar{P}_{k}^{w_{k}} P_{1}^{\prime f_{1}} \ldots P_{\ell}^{\prime f_{\ell}} P_{1}^{\prime \prime h_{1}} \ldots P_{m}^{\prime \prime h_{m}}
$$

with $v_{i}+w_{i}=e_{i}$. In this case, we have $\left(e_{1}+1\right) \ldots\left(e_{k}+1\right)$ possibilities. If one of the g_{i} is odd, then there is no I satisfying $I \bar{I}=N^{*} \mathfrak{O}_{\mathbb{F}}$. Here we should note that $v_{\mathfrak{p}_{i}}\left(N^{*}\right)=e_{i}$. Hence, it is now easy to obtain the above formula for s_{N}. However, there is some redundancy in this formula. That is, the cardinality of Y is just one. Also we can obtain the following explicit description:
$X=X_{1} \cup X_{2}$
$X_{1}=\left\{(a+b \sqrt{2}) \in \operatorname{Spec} \mathfrak{O}_{\mathbb{E}}\left|a, b \in \mathbb{Z},\left(a^{2}-2 b^{2}\right) \in \operatorname{Spec} \mathbb{Z},\left|a^{2}-2 b^{2}\right| \equiv 1(\bmod 8)\right\}\right.$
$X_{2}=\left\{(p) \in \operatorname{Spec} \mathfrak{O}_{\mathbb{E}} \mid p \in \mathbb{Z},(p) \in \operatorname{Spec} \mathbb{Z}, p \equiv \pm 3(\bmod 8)\right\}$
$Y=\left\{(\sqrt{2}) \in \operatorname{Spec} \mathfrak{O}_{\mathbb{E}}\right\}$
$Z=\left\{(a+b \sqrt{2}) \in \operatorname{Spec} \mathfrak{O}_{\mathbb{E}}\left|a, b \in \mathbb{Z},\left(a^{2}-2 b^{2}\right) \in \operatorname{Spec} \mathbb{Z},\left|a^{2}-2 b^{2}\right| \equiv-1(\bmod 8)\right\}\right.$.
Furthermore, we can rewrite the formula as follows:

$$
s_{N}=8 \cdot \prod_{i=1}^{\ell}\left(a_{i}+1\right) \cdot \prod_{j=1}^{m}\left(b_{j}+1\right)
$$

if $c_{k} \equiv 0(\bmod 2)$ for all $1 \leqslant k \leqslant n$, and $s_{N}=0$ otherwise, where

$$
N^{* *}=N^{2}-2[N / \sqrt{2}]^{2}=2^{d} p_{1}^{a_{1}} \ldots p_{\ell}^{a_{\ell}} q_{1}^{2 b_{1}} \ldots q_{m}^{2 b_{m}} r_{1}^{c_{1}} \ldots r_{n}^{c_{n}}
$$

is a factorization of $N^{* *}$ into prime numbers satisfying $p_{i} \in A, q_{j} \in B, r_{k} \in C$ with $1 \leqslant i \leqslant \ell, 1 \leqslant j \leqslant m, 1 \leqslant k \leqslant n$,

$$
\begin{aligned}
& A=\{p \mid p \text { is a prime number, } p \equiv 1(\bmod 8)\} \\
& B=\{p \mid p \text { is a prime number, } p \equiv \pm 3(\bmod 8)\} \\
& C=\{p \mid p \text { is a prime number, } p \equiv-1(\bmod 8)\}
\end{aligned}
$$

This means that we need only the factorization of $N^{* *}$ to get the value s_{N}, which characterizes our shelling. A table of the first few non-trivial s_{N} is given below:

| N | 1 | 2 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 14 | 15 | 17 | 18 | 20 | 21 | \ldots | 69 | \ldots | 90 |
| :--- | ---: |
| s_{N} | 8 | 8 | 8 | 8 | 8 | 16 | 16 | 8 | 8 | 16 | 16 | 8 | 16 | 8 | 8 | \ldots | 32 | \ldots | 24 |

It should be interesting to have information about the average shelling, which might be more difficult.

References

[1] Baake M, Joseph D, Kramer P and Schlottmann 1990 Root lattices and quasicrystals J. Phys. A: Math. Gen. 23 L1037-41
[2] De Bruijin N G 1981 Sequences of zeros and ones generated by special production rules Math. Proc. A 84 27-37
[3] De Bruijin N G 1981 Algebraic theory of Penrose's non-periodic tilings of the plane Math. Proc. A 84 39-66
[4] Elser V 1986 The diffraction pattern of projected structures Acta Crystallogr. A 42 36-43
[5] Elser V and Sloane N J A 1987 A highly symmetric four-dimensional quasicrystal J. Phys. A: Math. Gen. 20 6161-8
[6] Janot C 1994 Quasicrystals-A primer 2nd edn (Oxford: Oxford Science)
[7] Katz A and Deneau M 1985 Quasiperiodic patterns Phys. Rev. Lett. 54 2688-91
[8] Kalugin P A, Kitayev A Yu and Levitov L S 1985 6-dimensional properties of $\mathrm{Al}_{0.86} \mathrm{Mn}_{0.14}$ alloy J. Physique Lett. 46 L601-7
[9] Moody R V and Patera J 1993 Quasicrystals and icosians J. Phys. A: Math. Gen. 26 2829-53
[10] Moody R V and Weiss A 1994 On shelling E8 quasicrystals J. Number Theory 47 405-12
[11] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Metallic phase with long-range orientational order and no translational symmetry Phys. Rev. Lett. 53 1951-3
[12] Sadoc J-F and Mosseri R 1993 The E_{8} lattice and quasicrystals: geometry, number theory, and quasicrystals J. Phys. A: Math. Gen. 26 1789-809
[13] Wang N, Chen H and Kuo K H 1987 Two dimensional quasicrystal with eightfold rotational symmetry Phys. Rev. Lett. 59 1010-13
[14] Wang Z M and Kuo K H 1988 The octagonal quasilattice and electron diffraction patterns of the octagonal phase Acta Crystallogr. A 44 857-63
[15] Washington L C 1997 Introduction to Cyclotomic Fields (Graduate Texts in Mathematics 83) 2nd edn (New York: Springer)

