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Octagonal quasicrystals and a formula for shelling

Jun Morita and Kuniko Sakamoto
Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan

Received 17 June 1998

Abstract. Octagonal quasicrystals will be realized in a cyclotomic field, and a formula for
shelling will be given using number theory.

Let V = ⊕4
i=1Rεi be a Euclidean space with an orthonormal basis{ε1, ε2, ε3, ε4}, and

Q = ⊕4
i=1Zεi the lattice inV spanned by this basis. We take a primitive eighth root of

unity ζ = (√2+√−2)/2, and a cyclotomic fieldF = Q(ζ ). PutE = R∩F = Q(√2). Let
OF = Z[ζ ], the ring of integers ofF, andOE = Z[

√
2], the ring of integers ofE. We put

τ = 1+√2 andσ = 1−√2. We choose a generatorδ of Gal(F/Q(
√−1)) ' Gal(E/Q)

with δ(
√

2) = −√2. We usex̄ for the complex conjugate ofx. Now we define aZ-linear
map, calledπ‖, of Q onto OF with

π‖(ε1) = ζ 0 = 1 π‖(ε2) = ζ = (
√

2+√−2)/2

π‖(ε3) = ζ−1 = (
√

2−√−2)/2 π‖(ε4) = ζ 2 = √−1.

For a positive real numberr, we define a quasicrystal

6r = {x ∈ OF | |δ(x)| < r}.
This definition is equivalent to the following construction usingp‖ and p⊥. (For
quasiperiodic patterns, quasicrystals and related alloys, we refer to [1–14] and so on.)
Let

v1 = ε1− ε2+ (1+
√

2)ε3− (1+
√

2)ε4 v2 = ε2− ε3+
√

2ε4

v′1 = ε1− ε2+ (1−
√

2)ε3− (1−
√

2)ε4 v′2 = ε2− ε3−
√

2ε4.

We putV‖ = Rv1⊕ Rv2 andV⊥ = Rv′1⊕ Rv′2. ThenV = V‖ ⊕ V⊥. We take a canonical
orthogonal projection,p‖, of V onto V‖, and a canonical orthogonal projection,p⊥, of V
ontoV⊥. Then we see that6r is isomorphic to

6r
Q = {p‖(x) | x ∈ Q, |p⊥(x)| < r}

underπ‖ (up to some scaling). Here, we will discuss a shelling of a particular quasicrystal.
We will follow the idea of Moody and Patera [9], and we will establish a formula for
shelling, which is analogous to Moody and Weiss [10].

For eachN = 0, 1, 2, . . . , we define

QN = {x ∈ Q | (x, x) = N}.
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Then the latticeQ decomposes into a set of concentric shellsQN . We now introduce a
shelling on each quasicrystal6r . We putOF,N = π‖(QN) and

6r
N = 6r ∩OF,N

= {x ∈ OF,N | |δ(x)| < r}.
Let x =∑4

i=1 aiεi ∈ QN . Then

|π‖(x)|2 = |a1+ a2(
√

2+√−2)/2+ a3(
√

2−√−2)/2+ a4

√−1|2
= (a1+ a2/

√
2+ a3/

√
2)2+ (a2/

√
2− a3/

√
2+ a4)

2

= (a2
1 + a2

2 + a2
3 + a2

4)+ (a1a2+ a1a3+ a2a4− a3a4)
√

2.

Hence, for eachx ∈ OF, we see thatx ∈ 6r
N if and only if

|x|2 = N +m
√

2

06 |δ(x)|2 = N −m
√

2< r2

for somem ∈ Z, which implies

N/
√

2> m > (N − r2)/
√

2.

In particular, it is an interesting situation whenN/
√

2= (N − r2)/
√

2+ 1. Such anr will
be denoted byρ. That is,

ρ = (2)1/4.
In this case, we obtain

6
ρ

N = {x ∈ OF | |x|2 = N + [N/
√

2]
√

2}
for N = 0, 1, 2, . . . , where [ ] is the Gauss symbol. Now we consider the inflation

x 7−→ τx

which maps6ρ bijectively onto6ρ/τ contained in6ρ . Then we obtain

x ∈ 6ρ

N H⇒ |x|2 = N + [N/
√

2]
√

2

H⇒ |τx|2 = (1+
√

2)2(N + [N/
√

2]
√

2)

= (3+ 2
√

2)(N + [N/
√

2]
√

2)

= (3N + 4[N/
√

2])+ (2N + 3[N/
√

2])
√

2.

Sinceτx ∈ 6ρ , we see that|τx|2 = M + [M/
√

2]
√

2 andτx ∈ 6ρ

M for someM by the
choice of ourρ, which automatically meansM = 3N + 4[N/

√
2]. Hence,

τ6
ρ

N ⊂ 6ρ

3N+4[N/
√

2]

[(3N + 4[N/
√

2])/
√

2] = 2N + 3[N/
√

2].

For eachN , we define a sequence{Ln(N)}∞n=1 by

L1(N) = N
L2(N) = [N/

√
2]

L2`+1(N) = 3L2`−1(N)+ 4L2`(N)

L2`+2(N) = 2L2`−1(N)+ 3L2`(N).
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Then, we can see, for all oddn,

τ6
ρ

Ln(N)
⊂ 6ρ

Ln+2(N)

x ∈ 6ρ

Ln(N)
⇒ |x|2 = Ln(N)+ Ln+1(N)

√
2

Ln+1(N) = [Ln(N)/
√

2].

Now we supposex ∈ 6ρ

Ln+2(N)
with n odd. Then

|x|2 = Ln+2(N)+ Ln+3(N)
√

2

and

|σx|2 = (3− 2
√

2)(Ln+2(N)+ Ln+3(N)
√

2)

= (3Ln+2(N)− 4Ln+3(N))+ (3Ln+3(N)− 2Ln+2(N))
√

2

= Ln(N)+ Ln+1(N)
√

2.

Hence,σx ∈ 6ρ

Ln(N)
, and sox = −τ(σx) ∈ τ6ρ

Ln(N)
. Therefore,

τ6
ρ

Ln(N)
= 6ρ

Ln+2(N)
.

We define

sN = card6ρ

N

for N = 0, 1, 2, . . . . Then we see

sN = s3N+4[N/
√

2].

We also observe that each shell6ρ

N has complete I2(8)-symmetry. That is,ζ6ρ

N = 6
ρ

N .
Hence, 8|sN for all N = 1, 2, 3, . . . . Furthermore, using a field extensionF/E (cf [15]), it
is easily seen thatsN has the following formula:

sN = 8 ·
∏
p∈X

(vp(N
∗)+ 1)

if vp(N
∗) ≡ 0 (mod 2) for all p ∈ Z andN > 0, where

X = {p ∈ SpecOE | ∃P ∈ SpecOF, pOF = P P̄ , P 6= P̄ }
Y = {p ∈ SpecOE | ∃P ∈ SpecOF, pOF = P 2, P = P̄ }
Z = {p ∈ SpecOE | pOF ∈ SpecOF}

where Spec is the spectrum of prime ideals,vp is the discrete valuation ofOE with respect
to p andN∗ = N + [N/

√
2]
√

2. If vp(N
∗) 6≡ 0 (mod 2) for somep ∈ Z, thensN = 0.

We will explain in more detail. Letφ be a map of

6
ρ

N = {x ∈ OF | |x|2 = N∗}
into

3N = {I ⊂ OF | I = ideal, I Ī = N∗OF}
defined byφ(x) = xOF. If φ(x) = φ(y) with x, y ∈ 6ρ

N , thenxOF = yOF andx = yu
for someu ∈ O

×
F . This implies |x|2 = |y|2 · |u|2 and |u|2 = 1. Hence,u = ζ i for

some i. Conversely we see thatφ(x) = φ(ζ ix). Therefore,φ is an eight-to-one map.
On the other hand, let take an idealI ∈ 3N . We write I = zOF with z ∈ OF. Then
I Ī = zz̄OF = N∗OF. Hence, there ist ∈ O

×
F such thatzz̄t = N∗, which implies that

t ∈ O
×
F ∩ E = O

×
E . Thus, t = ±(1+ √2)k for somek. Sincezz̄t = N∗, t > 0 and

t = (1+ √2)k. Then, δ(zz̄t) = δ(N∗) and |δ(z)|2δ(t) = δ(N∗) > 0. Hence,δ(t) > 0,
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which means thatt = (1+√2)2k for somek. Therefore, if we putx = z(1+√2)k ∈ 6ρ

N ,
thenφ(x) = xOF = z(1+

√
2)kOF = zOF = I . Hence, we see thatφ is surjective. We

now established the following:

sN = 8 · card3N.

If N∗OE = p
e1
1 . . . p

ek
k p
′f1
1 . . . p

′f`
` p
′′g1
1 . . . p

′′gm
m with pi ∈ X, p′i ∈ Y andp′′i ∈ Z, then

N∗OF = (P1P̄1)
e1 . . . (PkP̄k)

ekP
′2f1
1 . . . P

′2f`
` P

′′g1
1 . . . P ′′gmm

wherepiOF = PiP̄i , p′iOF = P ′2i andp′′i OF = P ′′i with Pi , P ′i , P
′′
i ∈ Spec(OF). Then we

must find all possible choices forI satisfyingI Ī = N∗OF. If all gi are even, saygi = 2hi ,
then we can choose

I = P v1
1 P̄

w1
1 . . . P

vk
k P̄

wk
k P

′f1
1 . . . P

′f`
` P

′′h1
1 . . . P ′′hmm

with vi + wi = ei . In this case, we have(e1+ 1) . . . (ek + 1) possibilities. If one of thegi
is odd, then there is noI satisfyingI Ī = N∗OF. Here we should note thatvpi (N

∗) = ei .
Hence, it is now easy to obtain the above formula forsN . However, there is some redundancy
in this formula. That is, the cardinality ofY is just one. Also we can obtain the following
explicit description:

X = X1 ∪X2

X1 = {(a + b
√

2) ∈ SpecOE | a, b ∈ Z, (a2− 2b2) ∈ SpecZ, |a2− 2b2| ≡ 1 (mod 8)}
X2 = {(p) ∈ SpecOE | p ∈ Z, (p) ∈ SpecZ, p ≡ ±3 (mod 8)}
Y = {(

√
2) ∈ SpecOE}

Z = {(a + b
√

2) ∈ SpecOE | a, b ∈ Z, (a2− 2b2) ∈ SpecZ, |a2− 2b2| ≡ −1(mod8)}.
Furthermore, we can rewrite the formula as follows:

sN = 8 ·
∏̀
i=1

(ai + 1) ·
m∏
j=1

(bj + 1)

if ck ≡ 0 (mod 2) for all 16 k 6 n, andsN = 0 otherwise, where

N∗∗ = N2− 2[N/
√

2]2 = 2dpa1
1 . . . p

a`
` q

2b1
1 . . . q2bm

m r
c1
1 . . . r

cn
n

is a factorization ofN∗∗ into prime numbers satisfyingpi ∈ A, qj ∈ B, rk ∈ C with
16 i 6 `, 16 j 6 m, 16 k 6 n,

A = {p | p is a prime number, p ≡ 1 (mod 8)}
B = {p | p is a prime number, p ≡ ±3 (mod 8)}
C = {p | p is a prime number, p ≡ −1 (mod 8)}.

This means that we need only the factorization ofN∗∗ to get the valuesN , which
characterizes our shelling. A table of the first few non-trivialsN is given below:

N 1 2 3 4 6 7 9 10 12 14 15 17 18 20 21. . . 69 . . . 90
sN 8 8 8 8 8 16 16 8 8 16 16 8 16 8 8. . . 32 . . . 24

It should be interesting to have information about the average shelling, which might be
more difficult.
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